Arsenic(III) Remediation from Contaminated Water by Oxidation and Fe/Al Co-Precipitation
نویسندگان
چکیده
Battery grade γ-MnO2 powder was investigated as an oxidant and an adsorbent in combination with Fe/Al coagulants for removal of arsenic from contaminated water. Simultaneous oxidation of As(III) and removal by coprecipitation/adsorption (one step process) was compared with pre-oxidation and subsequent removal by coprecipitation/adsorption (two step process). The rate of As(III) oxidation with MnO2 is completed in two stages: rapid initially followed by a first order reaction. As(III) is oxidised to As(V) by the MnO2 with a release of approximately 1:1 molar Mn(II) into the solution. No significant pH effect on oxidation of As(III) was observed in the pH range 4 6. The rate showed a decreasing trend above pH 6. The removal of As(V) by adsorption on the MnO2 decreased significantly with increasing pH from 4 to 8. The adsorption capacity of the γ-MnO2 with particle size 90% passing 10 μm was determined to be 1.5 mg/g at pH 7. MnO2 was found to be more effective as an oxidant for As(III) in the two step process than in the one step process.
منابع مشابه
Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater.
Competitive effects of phosphate, silicate, sulfate, and carbonate on As(III) and As(V) removal at pH approximately 7.2 have been investigated to test the feasibility of Fe(II)(aq) and hydroxylapatite crystals as inexpensive and potentially efficient agents for remediation of contaminated well-water, using Bangladesh as a type study. Arsenic(III) removal approximately 50-55% is achieved, when F...
متن کاملAnaerobic Fe(II)-oxidizing bacteria show as resistance and immobilize as during Fe(III) mineral precipitation.
More than 100 million individuals worldwide are exposed to arsenic-contaminated water, making the investigation of arsenic mobility in aquatic systems of utmost importance. Iron (hydr)oxides play a key role in preventing arsenic release in aquifers and soils due to their strong arsenic sorption and are even used to remove arsenic in water treatment. Neutrophilic Fe(II)-oxidizing bacteria produc...
متن کاملArsenic Mobilization through Bioreduction of Iron Oxide Nanoparticles
Arsenic sorbs strongly to the surfaces of Fe(III) (hydr)oxides. Under aerobic conditions, oxygen acts as the terminal electron acceptor in microbial respiration and Fe(III) (hydr)oxides are highly insoluble, thus arsenic remains associated with Fe(III) (hydr)oxide phases. However, under anaerobic conditions Fe(III)-reducing microorganisms can couple the reduction of solid phase Fe(III) (hydr)ox...
متن کاملSchwertmannite Synthesis through Ferrous Ion Chemical Oxidation under Different H2O2 Supply Rates and Its Removal Efficiency for Arsenic from Contaminated Groundwater
Schwertmannite-mediated removal of arsenic from contaminated water has attracted increasing attention. However, schwertmannite chemical synthesis behavior under different H2O2 supply rates for ferrous ions oxidation is unclear. This study investigated pH, ferrous ions oxidation efficiency, and total iron precipitation efficiency during schwertmannite synthesis by adding H2O2 into FeSO4 · 7H2O s...
متن کاملامکان سنجی استفاده از نانوذرات پراکسید کلسیم در حذف آرسنیک III از آبهای آلوده در کشاورزی و تاثیر آن بر پارامترهای کیفی آبیاری
MicrosoftInternetExplorer4 Background and Objectives: Arsenic is one of the most toxically contaminants in groundwater and soils. Due to the ability of bio-accumulation of arsenic III in plants through irrigation with contaminated water and its entrance to the food chain, irreparable hazards would be caused. The aim of this research is the feasibility study of arsenic III removal from poll...
متن کامل